Description: A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Price: 48.7 USD
Location: Matraville, NSW
End Time: 2024-12-06T03:47:23.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 60 Days
Refund will be given as: Money Back
EAN: 9780262037310
UPC: 9780262037310
ISBN: 9780262037310
MPN: N/A
Number of Pages: 288 Pages
Language: English
Publication Name: Elements of Causal Inference : Foundations and Learning Algorithms
Publisher: MIT Press
Item Height: 0.9 in
Subject: Programming / General, Programming / Algorithms, Intelligence (Ai) & Semantics, Neural Networks, General, Logic
Publication Year: 2017
Type: Textbook
Item Weight: 24.8 Oz
Author: Jonas Peters, Dominik Janzing, Bernhard Scholkopf
Subject Area: Mathematics, Philosophy, Computers
Item Length: 9.3 in
Item Width: 7.2 in
Series: Adaptive Computation and Machine Learning Ser.
Format: Hardcover